The most general investigation and exploitation of light-induced processes require simultaneous control over spatial and temporal properties of the electromagnetic field on a femtosecond time and nanometer length scale. Based on the combination of polarization pulse shaping and time-resolved two-photon photoemission electron microscopy, we demonstrate such control over nanoscale spatial and ultrafast temporal degrees of freedom of an electromagnetic excitation in the vicinity of a nanostructure. The time-resolved cross-correlation measurement of the local photoemission yield reveals the switching of the nanolocalized optical near-field distribution with a lateral resolution well below the diffraction limit and a temporal resolution on the femtosecond time scale. In addition, successful adaptive spatiotemporal control demonstrates the flexibility of the method. This flexible simultaneous control of temporal and spatial properties of nanophotonic excitations opens new possibilities to tailor and optimize the lightmatter interaction in spectroscopic methods as well as in nanophotonic applications.coherent control | nanophotonics | plasmonics | ultrafast spectroscopy T he interaction of light with matter is of fundamental importance in many areas of nature, science, and engineering, and the dynamics and efficiency of light-induced processes are determined by the properties of the optical field as a function of space and time at the location of interaction. Hence their most general investigation and exploitation would require the generation of light fields that can be specified at will in both their spatial and temporal degrees of freedom at all length and time scales. In the past, significant progress has been made toward realizing either of these two manipulation objectives separately. For temporal field properties, femtosecond laser pulse shaping (1) offers flexible control over the field amplitude, phase, and polarization (2, 3) on an ultrashort time scale. This has been exploited for coherent control over numerous quantum-mechanical systems (4, 5). For the case of spatial light-field properties, on the other hand, emerging nanooptical techniques (6) have made available spectroscopy beyond the Abbe diffraction limit, as, for example, nanoantenna-assisted addressing of individual molecules (7). Combination with femtosecond excitation offers high resolution in space and time (8-15) and opens routes toward novel applications (16,17). In particular, deliberate spatial manipulation of optical near-field distributions was realized with adaptive and coherent control methods (9,(11)(12)(13)(18)(19)(20)(21)(22). In our recent demonstration of adaptive control of nanooptical fields (13), only spatial properties of optical near-field distributions were accessed. In the present work, in contrast, we directly measure and control also the temporal evolution of the nanoscale excitation. This information is obtained and exploited here using time-resolved cross-correlation measurements with one polarization-shaped "pump" light pu...