Titanium-aluminium-vanadium (Ti 6Al 4V) alloys, nickel alloys (Inconel 718), and duraluminum alloys (AA 2000 series) are widely used materials in numerous engineering applications wherein machined features are required to having good surface finish. In this research, micro-impressions of 12 µm depth are milled on these materials though laser milling. Response surface methodology based design of experiment is followed resulting in 54 experiments per work material. Five laser parameters are considered naming lamp current intensity (I), pulse frequency (f), scanning speed (V), layer thickness (LT), and track displacement (TD). Process performance is evaluated and compared in terms of surface roughness through several statistical and microscopic analysis. The significance, strength, and direction of each of the five laser parametric effects are deeply investigated for the said alloys. Optimized laser parameters are proposed to achieve minimum surface roughness. For the optimized combination of laser parameters to achieve minimum surface roughness (Ra) in the titanium alloy, the said alloy consists of I = 85%, f = 20 kHz, V = 250 mm/s, TD = 11 µm, and LT = 3 µm. Similarly, optimized parameters for nickel alloy are as follows: I = 85%, f = 20 kHz, V = 256 mm/s, TD = 8 µm, and LT = 1 µm. Minimum roughness (Ra) on the surface of aluminum alloys can be achieved under the following optimized parameters: I = 75%, f = 20 kHz, V = 200 mm/s, TD = 12 µm, and LT = 3 µm. Micro-impressions produced under optimized parameters have surface roughness of 0.56 µm, 2.46 µm, and 0.54 µm on titanium alloy, nickel alloy, and duralumin, respectively. Some engineering applications need to have high surface roughness (e.g., in case of biomedical implants) or some desired level of roughness. Therefore, validated statistical models are presented to estimate the desired level of roughness against any laser parametric settings.