Abstract:Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.