Bovine leukaemia virus (BLV) proteins gp51, which are serving as antigens for specific antibodies against BLV proteins (anti-gp51), were applied as biological recognition part in the design of immunosensor devoted for the determination of anti-gp51. The efficiency of the immobilization of BLV proteins gp51 on ZnO nanorod (ZnO-NR) modified glass (ZnO-NR/glass) surface was evaluated. The formation of antigen-antibody complex on the ZnO/glass modified by the BLV proteins gp51 (gp51/ZnO-NR/glass) was investigated by the determination of changes in ZnO photoluminescence. The applicability of gp51/ZnO-NR/glass in the design of photoluminescence based immunosensor was evaluated. Bovine serum albumin (BSA) was applied for the modification of sensing gp51 layer in order to form gp51&BSA layer with advanced selectivity. Polyallylamine hydrochloride (PAH) was applied in order to improve the immobilization of gp51 and BSA based sensing layer (gp51&BSA) on the surface of ZnO-NR/glass. PAH was applied during the formation of gp51&BSA/PAH/ZnO-NR/glass structure. Some aspects of the mechanism of interaction between biomolecules (gp51, BSA and anti-gp51) and ZnO-NR during the preparation and action of gp51&BSA/ZnO-NR/glass-and gp51&BSA/PAH/ZnO-NR/glass-based immunosensors have been discussed.