Nanoparticulate systems have the prospect of accounting for a new making of drug delivery systems. Nanotechnology is manifested to traverse the hurdle of both physical and biological sciences by implementing nanostructures indistinct fields of science, particularly in nano-based drug delivery. The low delivery efficiency of nanoparticles is a critical obstacle in the field of tumor diagnosis. Several nano-based drug delivery studies are focused on for tumor diagnosis. But, the nano-based drug delivery efficiency was not increased for tumor diagnosis. This work proposes a method called point biserial correlation symbiotic organism search nanoengineering-based drug delivery (PBC-SOSN). The objective and aim of the PBC-SOSN method is to achieve higher drug delivery efficiency and lesser drug delivery time for tumor diagnosis. The contribution of the PBC-SOSN is to optimized nanonengineering-based drug delivery with higher r drug delivery detection rate and smaller drug delivery error detection rate. Initially, raw data acquired from the nano-tumor dataset, and nano-drugs for glioblastoma dataset, overhead improved preprocessed samples are evolved using nano variational model decomposition-based preprocessing. After that, the preprocessed samples as input are subjected to variance analysis and point biserial correlation-based feature selection model. Finally, the preprocessed samples and features selected are subjected to symbiotic organism search nanoengineering (SOSN) to corroborate the objective. Based on these findings, point biserial correlation-based feature selection and a symbiotic organism search nanoengineering were tested for their modeling performance with a nano-tumor dataset and nano-drugs for glioblastoma dataset, finding the latter the better algorithm. Incorporated into the method is the potential to adjust the drug delivery detection rate and drug delivery error detection rate of the learned method based on selected features determined by nano variational model decomposition for efficient drug delivery.