Citation: Hong SC, Magarey RD, Borchert DM, Vargas RI, Souder SK (2015) Site-specific temporal and spatial validation of a generic plant pest forecast system with observations of Bactrocera dorsalis (oriental fruit fly). NeoBiota 27: 37-67. doi: 10.3897/neobiota.27.5177 Abstract This study introduces a simple generic model, the Generic Pest Forecast System (GPFS), for simulating the relative populations of non-indigenous arthropod pests in space and time. The model was designed to calculate the population index or relative population using hourly weather data as influenced by developmental rate, high and low temperature mortalities and wet soil moisture mortality. Each module contains biological parameters derived from controlled experiments. The hourly weather data used for the model inputs were obtained from the National Center of Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) at a 38 km spatial resolution. A combination of spatial and site-specific temporal data was used to validate the GPFS models. The oriental fruit fly, Bactrocera dorsalis (Hendel), was selected as a case study for this research because it is climatically driven and a major pest of fruit production. Results from the GPFS model were compared with field B. dorsalis survey data in three locations: 1) Bangalore, India; 2) Hawaii, USA; and 3) Wuhan, China. The GPFS captured the initial outbreaks and major population peaks of B. dorsalis reasonably well, although agreement varied between sites. NeoBiota 27: 37-67 (2015) doi: 10.3897/neobiota.27.5177 http://neobiota.pensoft.net Seung Cheon Hong et al. / NeoBiota 27: 37-67 (2015) 38 the highest match between the observed and simulated B. dorsalis populations, with indices of agreement of 0.85. The site-specific temporal comparisons implied that the GPFS model is informative for prediction of relative abundance. Spatial results from the GPFS model were also compared with 161 published observations of B. dorsalis distribution, mostly from East Asia. Since parameters for pupal overwintering and survival were unknown from the literature, these were inferred from the distribution data. The study showed that GPFS has promise for estimating suitable areas for B. dorsalis establishment and potentially other non-indigenous pests. It is concluded that calibrating prediction models with both spatial and sitespecific temporal data may provide more robust and reliable results than validations with either data set alone.
RESEARCH ARTICLE
Advancing research on alien species and biological invasions
A peer-reviewed open-access journal
NeoBiota