The characteristics of two-target detection and imaging from negative-refraction photonic crystal (NR-PC) flat lens are studied by using the two-dimensional finite-difference time-domain method. It is demonstrated that due to the influence of the mini-forbidden band and resonance excitation effect, high transmissivity will appear at the normalized resonance frequency of 0.3068 when the lightwave goes through the NR-PC lens. Meanwhile, the use of the NR-PC lens may introduce at least fourfold improvement of the refocusing resolution, if compared to the directly backscattered lightwave without using the NR-PC lens. In addition, by giving a defination for two-target minimum distinguishable distance, we further investigate the performance of two-target detection and imaging system using the proposed focus-scanning scheme. The results show that the smaller the size of the target pair is, the weeker the interference between the two targets will be, which results in a better performance in the minimum distinguishable distance.