Natural hydraulic lime soil has good mechanical properties; as an earthen ruin restoration material, its durability is insufficient. Despite natural hydraulic lime being a topic that has been studied for several years from different researchers, it has not yet been fully considered for the improvement of durability. This work aims to experimentally investigate the enhancement of the durability properties of hydraulic lime-based. The performance of natural hydraulic limestone by adding sodium methyl silicate and organic silicon is examined and the effect of adding sodium methyl silicate on its performance and microstructure is studied. The 6%, 10%, and 15% lime–soil comparison test blocks of sodium silicate were compared with different lime–soil comparison test blocks not mixed with sodium methyl silicate; in addition to compression resistance, shear resistance, water absorption, and erosion resistance, dry–wet cycles were carried out, as well as microstructure testing and analysis. The results show that the addition of sodium methyl silicate enhances the compressive strength of hydraulic lime-modified soil, reduces its saturated water absorption, reduces its shear strength, improves its resistance to dry and wet cycles, and forms on the surface of the modified soil particles. The hydrophobic layer further improves its erosion resistance and water resistance. When the sodium methyl silicate content is 0.3%, the natural hydraulic lime soil has good mechanical properties and good durability, which is the optimal ratio.