Natural hydraulic lime soil has good mechanical properties; as an earthen ruin restoration material, its durability is insufficient. Despite natural hydraulic lime being a topic that has been studied for several years from different researchers, it has not yet been fully considered for the improvement of durability. This work aims to experimentally investigate the enhancement of the durability properties of hydraulic lime-based. The performance of natural hydraulic limestone by adding sodium methyl silicate and organic silicon is examined and the effect of adding sodium methyl silicate on its performance and microstructure is studied. The 6%, 10%, and 15% lime–soil comparison test blocks of sodium silicate were compared with different lime–soil comparison test blocks not mixed with sodium methyl silicate; in addition to compression resistance, shear resistance, water absorption, and erosion resistance, dry–wet cycles were carried out, as well as microstructure testing and analysis. The results show that the addition of sodium methyl silicate enhances the compressive strength of hydraulic lime-modified soil, reduces its saturated water absorption, reduces its shear strength, improves its resistance to dry and wet cycles, and forms on the surface of the modified soil particles. The hydrophobic layer further improves its erosion resistance and water resistance. When the sodium methyl silicate content is 0.3%, the natural hydraulic lime soil has good mechanical properties and good durability, which is the optimal ratio.
Silt has the characteristics of obvious capillary water effect and strong water sensitivity. The flooding of the Yellow River caused the water level in Kaifeng to be high, and the damage of capillary water to the silt site of Kaifeng Zhouqiao site is increasing day by day. In order to improve the waterproof performance of the site soil, three kinds of silicone waterproof materials were selected, and the site soil was improved by internal mixing. The improvement effects of different materials were compared through the capillary water rise test, and the contact angle of the modified soil with the optimal ratio was measured. Microscopic tests were conducted to evaluate its wetting properties and reveal the mechanism of action of the modified materials. The results show that the three kinds of silicone waterproofing agents can improve the waterproofing effect of soil, among which 0.5% sodium methylsilicate modified soil has the most significant waterproofing effect; its capillary water absorption inhibition effect can reach 98.34%, and the contact angle is 137.06. The surface of the modified soil is hydrophobic after the addition of sodium methylsilicate. An evenly distributed waterproof film is thus formed on the surface of the soil particles, which changes the contact mode between the soil particles and strengthens the connection between the soil particles, so that the proportion of large pores decreased. The proportion of mesopores and small pores increased, which made the soil sample more compact. These results explain the improvement of the waterproof performance of the soil sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.