Liver fibrosis is a severe, life-threatening clinical condition resulting from nonresolving hepatitis of different origins. IL-17A is critical in inflammation, but its relation to liver fibrosis remains elusive. We find increased IL-17A expression in fibrotic livers from HBV-infected patients undergoing partial hepatectomy because of cirrhosis-related early-stage hepatocellular carcinoma in comparison with control nonfibrotic livers from uninfected patients with hepatic hemangioma. In fibrotic livers, IL-17A immunoreactivity localizes to the inflammatory infiltrate. In experimental carbon tetrachloride–induced liver fibrosis of IL-17RA–deficient mice, we observe reduced neutrophil influx, proinflammatory cytokines, hepatocellular necrosis, inflammation, and fibrosis as compared with control C57BL/6 mice. IL-17A is produced by neutrophils and T lymphocytes expressing the Th17 lineage–specific transcription factor Retinoic acid receptor–related orphan receptor γt. Furthermore, hepatic stellate cells (HSCs) isolated from naive C57BL/6 mice respond to IL-17A with increased IL-6, α-smooth muscle actin, collagen, and TGF-β mRNA expression, suggesting an IL-17A–driven fibrotic process. Pharmacologic ERK1/2 or p38 inhibition significantly attenuated IL-17A–induced HSC activation and collagen expression. In conclusion, IL-17A+ Retinoic acid receptor–related orphan receptor γt+ neutrophils and T cells are recruited into the injured liver driving a chronic, fibrotic hepatitis. IL-17A–dependent HSC activation may be critical for liver fibrosis. Thus, blockade of IL-17A could potentially benefit patients with chronic hepatitis and liver fibrosis.