2022
DOI: 10.1016/j.array.2022.100217
|View full text |Cite
|
Sign up to set email alerts
|

Natural language model for automatic identification of Intimate Partner Violence reports from Twitter

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2025
2025

Publication Types

Select...
5
2
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 19 publications
(6 citation statements)
references
References 23 publications
0
2
0
2
Order By: Relevance
“…In this regard, IPV-related subreddits will be greatly beneficial to learning about survivors’ lived experiences and needs and offering tailored support in a timely manner. Secondly, during the pandemic, ~11% of the IPV-related tweets contained first-hand experiences of IPV ( Al-Garadi et al, 2022 ; Rai et al, 2022 ), whereas one-third of the OPs across the four IPV-related subreddits came from survivors in our study. This figure is also higher than that from surveys.…”
Section: Discussionmentioning
confidence: 68%
“…In this regard, IPV-related subreddits will be greatly beneficial to learning about survivors’ lived experiences and needs and offering tailored support in a timely manner. Secondly, during the pandemic, ~11% of the IPV-related tweets contained first-hand experiences of IPV ( Al-Garadi et al, 2022 ; Rai et al, 2022 ), whereas one-third of the OPs across the four IPV-related subreddits came from survivors in our study. This figure is also higher than that from surveys.…”
Section: Discussionmentioning
confidence: 68%
“…Por ejemplo, Aragón et al [29] y Frenda et al [30], emplearon algoritmos como CNN (Convolutional Neural Network) y LSTM (Long-Short Term Memory), para detectar discursos de odio y agresión en tuits mexicanos (clasificándolos en agresivos y no agresivos), obteniendo resultados por debajo del 60% de exactitud. Por otro lado, Algaradi et al [31] estudiaron varios algoritmos de aprendizaje automático y profundo, incluyendo los actuales transformers, para identificar automáticamente si se denuncia la violencia de pareja o no, en X, logrando resultados entre el 89% y el 95% de exactitud.…”
Section: Trabajos Relacionadosunclassified
“…Sin embargo, se pueden discutir algunas de ellas, por ejemplo, en el trabajo de Prieto Cruz y Montoya Vasquez [12], el tamaño de la clase MV predomina sobre la clase MNV, lo que resulta en tasas de clasificación sobre la clase de interés por encima del 90% en términos de sensibilidad. Otro ejemplo, es el presentado por Al-Garadi et al [31], que muestra valores de exactitud entre 85% y 95%, pero un desempeño en la clase minoritaria (con puntaje F1) de 0.76 y un conjunto de datos que incluye solo 7016 tuits, i.e., el desempeño en la clase principal es menor que el obtenido por nuestro método propuesto. En los trabajos de Salehi et al [13], Frenda et al [30] y Díaz et al [33] el tamaño del conjunto de datos también es menor (el de mayor tamaño tiene 11,000 comentarios aproximadamente).…”
Section: Rendimiento Del Clasificadorunclassified
“…Among the wide range of AI algorithms, some literature sources compare different conventional machine learning models such as Support Vector Machine (SVM), k-Nearest Neighbours, Decision Tree, and Naive Bayes, in relation to their effectiveness in classifying online posts related to domestic violence [13][14][15]. In the classification of domestic violence-related online content, SVM has demonstrated a general superiority over other traditional machine learning classifiers [16].…”
Section: And Andmentioning
confidence: 99%