At present, screening of active ingredients from natural products for pharmacological and clinical research is mostly time-consuming and costly. In this study, a molecular network (MN) guided high performance liquid chromatography-ultraviolet-fluorescence detector (HPLC-UV-FLD) method was carried out to profile the global antioxidant activity compounds, including the trace amount ingredients in Camellia nitidissima Chi (CNC). Firstly, HPLC-UV-FLD postcolumn derivatization system was utilized to screen the antioxidants. Then the MN of CNC was established via mass spectrometry (MS) data for getting the connection between ingredient structures. As a result, HPLC-UV-FLD indicated three antioxidant ingredients: gallic acid (126.3 mg/g), catechin (564.8 mg/g), and salicylic acid (24.3 mg/g). Combined with the MN, the actives' precise location and connection relationship were clarified based on the structural similarities. A new antioxidant ingredient, okicamelliaside, was suggested and evaluated at free radical scavenging and enzymatic protection. The novel method of activity and structural correlation analysis based on MN could provide a useful guide for screening trace active ingredients in natural products.Practical Application: Three main ingredients were screened out from Camellia nitidissima Chi by HPLC-UV-FLD postcolumn derivatization system. Integrated molecular network and HPLC-UV-FLD analysis, a new type of antioxidant okicamelliaside was selected. The novel method of activity and structural correlation analysis based on molecular network could provide a useful guide for screening trace active ingredients in natural products.