1982
DOI: 10.1007/bf02074061
|View full text |Cite
|
Sign up to set email alerts
|

Nature of the active component of copper-zinc-aluminium catalyst for methanol synthesis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
2

Year Published

1983
1983
2017
2017

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 24 publications
(9 citation statements)
references
References 3 publications
0
7
0
2
Order By: Relevance
“…The Cu/ZnO/Al 2 O 3 catalyst was prepared by a conventional co-precipitation method with a wt% ratio of CuO : ZnO : Al 2 O 3 = 6 : 3 : 1. 1,[43][44][45] Catalytic tests under industry relevant conditions were carried out with 250 mg of catalyst in a stainless steel reactor tube with a diameter of 6 mm. Prior to the reaction the catalyst was reduced for 6 hours in a stream of 5% H 2 /He at 250 1C with a total flow rate of 75 ml min À1 .…”
Section: Methodsmentioning
confidence: 99%
“…The Cu/ZnO/Al 2 O 3 catalyst was prepared by a conventional co-precipitation method with a wt% ratio of CuO : ZnO : Al 2 O 3 = 6 : 3 : 1. 1,[43][44][45] Catalytic tests under industry relevant conditions were carried out with 250 mg of catalyst in a stainless steel reactor tube with a diameter of 6 mm. Prior to the reaction the catalyst was reduced for 6 hours in a stream of 5% H 2 /He at 250 1C with a total flow rate of 75 ml min À1 .…”
Section: Methodsmentioning
confidence: 99%
“…Среди них особое место занимают покрытия на основе алюмо-оксидной керамики, благодаря своим уникальным оптическим, антикоррозионным, диэлектрическим свойствам, а также высокой износостойкости. Наи-более востребованы такие покрытия в процессах создания защитных слоев для солнечных батарей [10], формирования диэлектрических прослоек в конденсаторах [11], многослойных диэлектрических зеркал [12,13], жаропрочных, твердых покрытий [14,15], катализаторов [16]. На сегодняшний день Предлагаемый альтернативный метод элек-тронно-лучевого испарения выгодно отличается простотой реализации процесса, достаточно высо-кими скоростями осаждения (на уровне нескольких единиц микрометров за минуту), возможностью ре-гулирования параметров нанесения в широких пре-делах [22][23][24].…”
Section: создание диэлектрических покрытийunclassified
“…Promising applications of these materials include surface passivation of solar cells [1], deposition of capacitor dielectric layers [2], formation of multilayer dielectric mirrors [3,4], hard heat-resistant coatings [5,6], catalysts [7], and more. These kinds of coatings are routinely deposited by plasma and detonation gun spraying [5], sol-gel methods [8], chemical vapor deposition [9], and RF magnetron sputtering [10].…”
Section: Introductionmentioning
confidence: 99%