Abstract:Superionic conductors have great potential as solid-state electrolytes, but the physics of type-II superionic transitions remains elusive. In this study, we employed molecular dynamics simulations, using machine learning force fields, to investigate the type-II superionic phase transition in α-Li3N. We characterised Li3N above and below the superionic phase transition by calculating the heat capacity, Li+ ion self-diffusion coefficient, and Li defect concentrations as functions of temperature. Our findings ind… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.