Lead‐free halide double perovskites with diverse electronic structures and optical responses, as well as superior material stability show great promise for a range of optoelectronic applications. However, their large bandgaps limit their applications in the visible light range such as solar cells. In this work, an efficient temperature‐derived bandgap modulation, that is, an exotic fully reversible thermochromism in both single crystals and thin films of Cs2AgBiBr6 double perovskites is demonstrated. Along with the thermochromism, temperature‐dependent changes in the bond lengths of AgBr (RAgBr) and BiBr (RBiBr) are observed. The first‐principle molecular dynamics simulations reveal substantial anharmonic fluctuations of the RAgBr and RBiBr at high temperatures. The synergy of anharmonic fluctuations and associated electron–phonon coupling, and the peculiar spin–orbit coupling effect, is responsible for the thermochromism. In addition, the intrinsic bandgap of Cs2AgBiBr6 shows negligible changes after repeated heating/cooling cycles under ambient conditions, indicating excellent thermal and environmental stability. This work demonstrates a stable thermochromic lead‐free double perovskite that has great potential in the applications of smart windows and temperature sensors. Moreover, the findings on the structure modulation‐induced bandgap narrowing of Cs2AgBiBr6 provide new insights for the further development of optoelectronic devices based on the lead‐free halide double perovskites.
The lead-free halide double perovskite class of materials offers a promising venue for resolving issues related to toxicity of Pb and long-term stability of the lead-containing halide perovskites. We present a firstprinciples study of the lattice vibrations in Cs 2 AgBiBr 6 , the prototypical compound in this class and show that the lattice dynamics of Cs 2 AgBiBr 6 is highly anharmonic, largely in regards to tilting of AgBr 6 and BiBr 6 octahedra. Using an energy-and temperature-dependent phonon spectral function, we then show how the experimentally observed cubic-to-tetragonal phase transformation is caused by the collapse of a soft phonon branch. We finally reveal that the softness and anharmonicity of Cs 2 AgBiBr 6 yield an ultralow thermal conductivity, unexpected of high-symmetry cubic structures.
Lead‐free halide double perovskites (A2BIBIIIX6) with attractive optical and electronic features are considered to be a promising candidate to overcome the toxicity and stability issues of lead halide perovskites (APbX3). However, their poor absorption profiles limit device performance. Here the absorption band edge of Cs2AgBiBr6 double perovskite to the near‐infrared range is significantly broadened by developing doped double perovskites, Cs2(Ag:Cu)BiBr6. The partial replacement of Ag ions by Cu ions in the crystal lattice is confirmed by the X‐ray photoelectron spectroscopy (XPS) and solid‐state nuclear magnetic resonance (ssNMR) measurements. Cu doping barely affects the bandgap of Cs2AgBiBr6; instead it introduces subbandgap states with strong absorption to the near‐infrared range. More interestingly, the near‐infrared absorption can generate band carriers upon excitation, as indicated by the photoconductivity measurement. This work sheds new light on the absorption modulation of halide double perovskites for future efficient optoelectronic devices.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.
Instabilities relating to cooperative octahedral tilting is common in materials with perovskite structures, and in particular in the sub class of halide perovskites. In this work, the energetics of octahedral tilting in the inorganic metal halide perovskites CsPbI3 and CsSnI3 are investigated using first-principles density functional theory calculations. Several low energy paths between symmetry equivalent variants of the stable orthorhombic (Pnma) perovskite variant are identified and investigated. The results are in favor of the presence of dynamic disorder in the octahedral tilting phase transitions of inorganic halide perovskites. In particular, one specific type of path, corresponding to an out-of-phase "tilt switch", is found to have significantly lower energy barrier than the others, which indicates the existence of a temperature range where the dynamic fluctuations of the octahedra follow only this type of path. This could produce a time averaged structure corresponding to the intermediate tetragonal (P4/mbm) structure observed in experiments. Deficiencies of the commonly employed simple one-dimensional "double well" potentials in describing the dynamics of the octahedra are pointed out and discussed. arXiv:1802.09632v3 [cond-mat.mtrl-sci]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.