2020
DOI: 10.25105/jetri.v17i2.5447
|View full text |Cite
|
Sign up to set email alerts
|

Navigasi Indoor Berbasis Peta pada Robot Beroda dengan Platform Robot Operating System

Abstract: Wheeled robots are widely used in many industrial fields. The wheeled robot needs to have implemented an autonomous navigation system to improve work efficiency. In this research, a map-based indoor navigation system is implemented on wheeled robot with Robotics Operating System (ROS) platform using Hector Mapping algorithm. The algorithm Multisensor Data Fusion using Extended Kalman Filter (EKF) which fuses Wheel Odometry data with IMU sensor data for localization, Field Dynamic A-Star algorithm for path plan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 5 publications
0
2
0
1
Order By: Relevance
“…memiliki tingkat keberhasilan 62,5% dalam menghasilkan jalur yang dapat dilewati robot dan robot memiliki tingkat keberhasilan 75% dalam mengikuti jalur. Robot memiliki tingkat kesalahan rata-rata 0,046m dalam bergerak menuju koordinat x target, 0,072m dalam bergerak menuju koordinat y target, dan 5,163 dalam berputar menuju sudut orientasi target [3].…”
Section: Pendahuluanunclassified
“…memiliki tingkat keberhasilan 62,5% dalam menghasilkan jalur yang dapat dilewati robot dan robot memiliki tingkat keberhasilan 75% dalam mengikuti jalur. Robot memiliki tingkat kesalahan rata-rata 0,046m dalam bergerak menuju koordinat x target, 0,072m dalam bergerak menuju koordinat y target, dan 5,163 dalam berputar menuju sudut orientasi target [3].…”
Section: Pendahuluanunclassified
“…The relative position of the robot is obtained through the AMCL Particle Filter algorithm by processing wheel odometry data. Wheel Odometry calculates the position of the robot based on the rotation of the wheel obtained from the rotary encoder which produces data on the linear speed of the robot on the x and y axes, the angular speed of the robot on the z-axis, and the angle of orientation of the robot on the z-axis (θ or yaw) [33].…”
Section: Navigation Systemmentioning
confidence: 99%
“…As a result, the mobile robot will require another autonomous navigation system in order to travel freely in the inside environment [3].…”
Section: Introductionmentioning
confidence: 99%