Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power J. Appl. Phys.The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films This paper deals with the analysis of nanoparticles polymerized in nitrogen/acetylene and argon/ acetylene gas mixtures in low temperature rf discharges. The polymerization process was monitored by means of mass spectroscopy. The chemical characteristics of the material were obtained in situ by infrared absorption spectroscopy and ex situ by means of near edge x-ray absorption fine structure spectroscopy. These data were supported by complimentary elemental analyses such as deuteron induced gamma emission, Rutherford backscattering, and nuclear reaction analysis. Although morphology showed no differences, further material analysis shows clearly nitrogen incorporation in the nanoparticles, mostly by multiple bonds. In comparison with the nanoparticles from argon/acetylene plasma, the amount of carbon in carbon-nitride nanoparticles remains unchanged, whereas hydrogen content strongly decreases. The results of mass spectroscopy on neutrals and ions lead to the assumption that carbon-nitride nanoparticles are formed by copolymerization of two kinds of precursors: hydrocarbon and nitrogen containing hydrocarbon species.