Dairy fat is one of the most complex natural fats because of its fatty acid (FA) composition. Ruminant dairy fat contains more than 400 different FA varying in carbon chain length, and degree, position and configuration of unsaturation. The following article reviews the different methods available to analyze FA (both total and free) in milk and dairy products. The most widely used methodology for separating and analyzing dairy FA is gas chromatography, coupled to a flame ionization detector (CG-FID). Alternatively, gas chromatography coupled to a mass spectrometer (GC-MS) is also used. After lipid extraction, total FA (TFA) are commonly converted into their methyl esters (fatty acid methyl esters, FAME) prior to chromatographic analysis. In contrast, free FA (FFA) can be analyzed after conversion to FAME or directly as FFA after extraction from the product. One of the key questions when analyzing FAME from TFA is the selection of a proper column for separating them, which depends mainly on the objective of the analysis. Quantification is best achieved by the internal standard method. Recently, near-infrared spectroscopy (NIRS), Raman spectroscopy (RS) and nuclear magnetic resonance (NMR) have been reported as promising techniques to analyze FA in milk and dairy products.