“…This would be especially beneficial for searches that require low latency, such as the early warning of binary neutron star mergers (Baltus et al, 2021 ; Yu et al, 2021 ). Other successful usage of ML techniques in GW astronomy include the identification of various GW events (Bayley et al, 2020 ; Chan et al, 2020 ; Dreissigacker and Prix, 2020 ; Huerta et al, 2020 ; Krastev, 2020 ; Schäfer et al, 2020 ; Wong et al, 2020 ; Beheshtipour and Papa, 2021 ; Chang et al, 2021 ; Chatterjee et al, 2021 ; López et al, 2021 ; Marianer et al, 2021 ; Mishra et al, 2021 ; Saiz-Pérez et al, 2021 ; Wei and Huerta, 2021 ; Yan et al, 2021 ), source parameter estimations (Gabbard et al, 2019 ; Chatterjee et al, 2020 ; Chua and Vallisneri, 2020 ; Green et al, 2020 ; Talbot and Thrane, 2020 ; Álvares et al, 2021 ; D'Emilio et al, 2021 ; Krastev et al, 2021 ; Williams et al, 2021 ; Xia et al, 2021 ), and detector characterization (Biswas et al, 2020 ; Colgan et al, 2020 ; Cuoco et al, 2020 ; Essick et al, 2020 ; Torres-Forné et al, 2020 ; Mogushi, 2021 ; Sankarapandian and Kulis, 2021 ; Soni et al, 2021 ; Zhan et al, 2021 ). Besides GW astronomy, the usage of CNNs has led to breakthroughs in a variety of topics related to time-series forecasting and classification (e.g., Refs.…”