During CNS development, oligodendrocyte progenitor (OP) cells migrate from germinal zones to presumptive white matter tracts to generate myelinating oligodendrocytes. In vitro and in vivo studies indicate that platelet-derived growth factor-A (PDGF-A) is a potent chemoattractant for OP cells and important for normal distribution throughout the developing CNS. However, PDGF-A does not localize in concentration gradients corresponding to OP migratory pathways, as would be expected for a chemoattractant to direct migration. Therefore, the mechanism by which PDGF-A regulates OP distribution remains to be clarified. Here we show that PDGF-A induces OP migration and continuous exposure to PDGF-A is not required to maintain migration. Using pharmacological inhibitors, we show that a self-sustaining extracellular-regulated-kinase signaling pathway drives OP migration for up to 72 hours after the initial PDGF stimulus. These findings indicate PDGF-A may act to mobilize OP cells that then respond to distinct directional signals to distribute appropriately within the CNS.