Hydroxyl polycyclic aromatic hydrocarbons are considered active mutagenic and carcinogenic substances and are found in extremely low levels (ng/g) in biological samples. As a result, their determination in urine and blood samples is challenging, and a sensitive and effective method for the analysis of trace hydroxyl polycyclic aromatic hydrocarbons in complex biological matrices is required. In this work, a novel macroporous in-tube solid-phase microextraction monolith was prepared via a thiol-yne click reaction, and a highly efficient analytical method based on in-tube solid-phase microextraction coupled with UHPLC-MS/MS was developed to determine hydroxyl polycyclic aromatic hydrocarbons with low detection limits of 0.137-11.0 ng/L in complex biological samples. Four hydroxyl polycyclic aromatic hydrocarbons, namely, 2-hydroxyanthraquinone, 1-hydroxypyrene, 1,8-dihydroxyanthraquinone, and 6hydroxychrysene, were determined in the urine samples of smokers, nonsmokers, and whole blood samples of mice. Satisfactory recoveries were achieved in the range of 83.1-113% with relative standard deviations of 3.2-9.7%. It was found that implementation of the macroporous monolith gave a highly efficient approach for enriching trace hydroxyl polycyclic aromatic hydrocarbons in biological samples.