2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED) 2013
DOI: 10.1109/demped.2013.6645771
|View full text |Cite
|
Sign up to set email alerts
|

Neural approach for bearing fault detection in three phase induction motors

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
5

Year Published

2015
2015
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(14 citation statements)
references
References 24 publications
0
9
0
5
Order By: Relevance
“…First, the training samples are randomly selected from the total sample (S-set), and the remaining are assigned as the testing samples, as shown in Equation (7). Second, the first procedure is repeated for ten times.…”
Section: Rotor Failure Diagnosis Testmentioning
confidence: 99%
See 1 more Smart Citation
“…First, the training samples are randomly selected from the total sample (S-set), and the remaining are assigned as the testing samples, as shown in Equation (7). Second, the first procedure is repeated for ten times.…”
Section: Rotor Failure Diagnosis Testmentioning
confidence: 99%
“…It can be deduced from such literature that motor failure diagnosis technology is progressing, especially in the areas of artificial neural network, fuzzy theory, and wavelet transform, which are the most widely used [2][3][4][5][6][7][8][9][10]. The failures can be effectively diagnosed by relying on better network weights in the artificial neural network, in addition to the requirement for huge historical data.…”
Section: Introductionmentioning
confidence: 99%
“…Inclusive, mesmo para falhas de origem mecânica, podem ser observadas alterações nas grandezas elétricas tais como a tensão e a corrente. As falhas internas ocasionam fenômenos perceptíveis externamente à máquina tais como vibrações, aumento da temperatura na carcaça e mudanças nos sinais de corrente de linha de alimentação do motor (GONGORA et al, 2013).…”
Section: Motivaçãounclassified
“…Essa variedade de situações propicia as investigações de falhas e corroboram para o surgimento continuado de metodologias e tecnologias diversas, tanto de softwares, como exemplo o descrito por Soares (2014), como também hardwares demonstrado por Gongora et al (2013), todas empregadas para o desenvolvimento e aperfeiçoamento das técnicas de detecção de falhas em MIT (D'ANGELO et al, 2011). Estas técnicas objetivam o assessoramento nas tomadas das decisões referentes à manutenção e ao melhor desempenho na detecção precoce da falta, buscando também a aplicação de algoritmos simplificados de análise diversificadas e sensoriamento de baixo custo (ISHIZAKA; NEMERY, 2014).…”
Section: Justificativaunclassified
See 1 more Smart Citation