“…In particular, contemporary ANN language models achieve impressive performance on a variety of linguistic tasks (e.g., Brown et al, 2020 ; Chowdhery et al, 2022 ; Devlin et al, 2018 ; Liu et al, 2019 ; OpenAI, 2023 ; Rae et al, 2021 ). Furthermore, representations extracted from ANN language models—especially unidirectional attention transformer architectures like GPT2 ( Radford et al, 2019 ) can explain substantial variance in brain activity recorded from the human language network using regression-based evaluation metrics (e.g., Caucheteux & King, 2022 ; Gauthier & Levy, 2019 ; Goldstein et al, 2022 ; Hosseini et al, 2022 ; Jain & Huth, 2018 ; Kumar et al, 2022 ; Oota et al, 2022 ; Pasquiou et al, 2022 ; Schrimpf et al, 2021 ; Toneva & Wehbe, 2019 ). This correspondence has been suggested to derive, at least in part, from the convergence of the ANNs’ linguistic representations with those in the human brain ( Caucheteux & King, 2022 ; Goldstein et al, 2022 ; Hosseini et al, 2022 ; Schrimpf et al, 2021 ), despite the vast differences in their learning and architecture (e.g., Huebner & Willits, 2021 ; Warstadt & Bowman, 2022 ).…”