A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation 1,2 , position 3 , and object category 4,5 from activity in visual cortex. However, these studies typically used relatively simple stimuli (e.g. gratings) or images drawn from fixed categories (e.g. faces, houses), and decoding was based on prior measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, we develop a decoding method based on quantitative receptive field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation, and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from brain activity measurements alone.
The meaning of language is represented in regions of the cerebral cortex collectively known as the “semantic system”. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modeling of fMRI data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that appear consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods—commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful and efficient means for mapping functional representations in the brain.
Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual V1 neurons, increases the sparseness of the population response distribution, and strongly decorrelates the responses of neuron pairs. These effects are due to both excitatory and suppressive modulation of the classical receptive field by the nonclassical receptive field and do not depend critically on the spatiotemporal structure of the stimuli. During natural vision, the classical and nonclassical receptive fields function together to form a sparse representation of the visual world. This sparse code may be computationally efficient for both early vision and higher visual processing.
Summary Humans can see and name thousands of distinct object and action categories, so it is unlikely that each category is represented in a distinct brain area. A more efficient scheme would be to represent categories as locations in a continuous semantic space mapped smoothly across the cortical surface. To search for such a space, we used functional magnetic resonance imaging (fMRI) to measure human brain activity evoked by natural movies. We then used voxel-wise models to examine the cortical representation of 1705 object and action categories. The first few dimensions of the underlying semantic space were recovered from the fit models by principal components analysis. Projection of the recovered semantic space onto cortical flat maps shows that semantic selectivity is organized into smooth gradients that cover much of visual and non-visual cortex. Furthermore, both the recovered semantic space and the cortical organization of the space are shared across different individuals.
Summary Quantitative modeling of human brain activity can provide crucial insights about cortical representations [1, 2], and can form the basis for brain decoding devices [3–5]. Recent functional magnetic resonance imaging (fMRI) studies have modeled brain activity elicited by static visual patterns, and have shown that it is possible to reconstruct these images from brain activity measurements [6–8]. However, blood oxygen level dependent (BOLD) signals measured using fMRI are very slow [9], so it has been difficult to model brain activity elicited by dynamic stimuli such as natural movies. Here we present a new motion-energy [10, 11] encoding model that largely overcome this limitation. Our motion-energy model describes fast visual information and slow hemodynamics by separate components. We recorded BOLD signals in occipito-temporal visual cortex of human subjects who passively watched natural movies, and fit the encoding model separately to individual voxels. Visualization of the fit models reveals how early visual areas represent moving stimuli. To demonstrate the power of our approach we also constructed a Bayesian decoder [8], by combining estimated encoding models with a sampled natural movie prior. The decoder provides remarkable reconstructions of natural movies, capturing the spatio-temporal structure of the viewed movie. These results demonstrate that dynamic brain activity measured under naturalistic conditions can be decoded using current fMRI technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.