1995
DOI: 10.1007/bf00872489
|View full text |Cite
|
Sign up to set email alerts
|

Neural nets for modelling rainfall-runoff transformations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
23
0
2

Year Published

2000
2000
2015
2015

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 67 publications
(25 citation statements)
references
References 10 publications
0
23
0
2
Order By: Relevance
“…CE is also insensitive to systematic positive or negative errors and has been criticised for interpretational difficulties, since even poor models can produce relatively high values and the best models do not produce values that on first examination are that much higher (Garrick et al, 1978: p376;Krause et al, 2005). It will also produce optimistic results in cases where the hydrological regime of interest exhibits marked seasonal variations, such that intrinsic periodic variation is an important part of total observed variation (Garrick et al, 1978;Lorrai and Sechi, 1995). The Modified Coefficient of Efficiency (MCE; Legates and McCabe, 1999;Krause et al, 2005) is a more generic metric that could be of particular interest since, through the use of absolute values, it will permit errors and differences to be given a more appropriate weighting i.e.…”
Section: Equation 18mentioning
confidence: 99%
“…CE is also insensitive to systematic positive or negative errors and has been criticised for interpretational difficulties, since even poor models can produce relatively high values and the best models do not produce values that on first examination are that much higher (Garrick et al, 1978: p376;Krause et al, 2005). It will also produce optimistic results in cases where the hydrological regime of interest exhibits marked seasonal variations, such that intrinsic periodic variation is an important part of total observed variation (Garrick et al, 1978;Lorrai and Sechi, 1995). The Modified Coefficient of Efficiency (MCE; Legates and McCabe, 1999;Krause et al, 2005) is a more generic metric that could be of particular interest since, through the use of absolute values, it will permit errors and differences to be given a more appropriate weighting i.e.…”
Section: Equation 18mentioning
confidence: 99%
“…When an ANN is used as a rainfall-runoff model, owing to the fact that it does not require much knowledge on catchment characteristics and hydrological processes as well as its ability for the simulation of nonlinear physical processes, the training process (calibration) is relatively simple compared with other kinds of lumped hydrological models. For this reason, ANN models have been applied successfully in hydrology, water resources and various civil engineering applications (Hsu et al, 1995;Lorrai and Sechi, 1995;Smith and Eli, 1995;Minns and Hall, 1996;Najjar et al, 1996;Wilby, 1998, 2001;Coulibaly et al, 1999Coulibaly et al, , 2000.…”
Section: Introductionmentioning
confidence: 98%
“…Muchas situaciones prácticas pueden no justificar el tiempo y el esfuerzo requerido para desarrollar, validar e implementar un modelo conceptual, cuando el principal objetivo es tener un sistema de respuestas lo suficientemente aproximado aunque no se profundice en el análisis del proceso físico. Una de estas situaciones prácticas puede ser la estimación en tiempo real de caudales en cuencas (Hsu et al, 1995;Lorrai y Sechi, 1995). Se debe puntualizar que la disponibilidad de los datos generalmente determina la elección del tipo de modelo.…”
Section: Introductionunclassified
“…Algunas aplicaciones de RNCs en el manejo y la gestión de los recursos hídricos incluyen la caracterización del proceso lluvia-escorrentía (Hsu et al, 1995;Lorrai y Sechi, 1995;Mason et al, 1996;Abrahart et al, 1999;Tokar y Johnson, 1999;Thirumalaiah y Deo, 2000;Tokar y Markus, 2000;Chiang et al, 2004;Moradkhani et al, 2004;Anctil y Rat, 2005), estimación a corto plazo del estado de ríos (Thirumalaiah y Deo, 1998Abrahart y See, 2000See y Openshaw, 2000;Cameron et al, 2002), predicción de lluvias (French et al, 1992;Zhang et al, 1997;Kuligowski y Barros, 1998;Palazón y García, 2004), modelación de aguas subterráneas (Roger y Dowla, 1994;Yang et al, 1997), predicción de demandas de agua en sistemas de abastecimiento urbano y zonas regables (Griñó, 1992;Pulido-Calvo et al, 2002, 2003, descripción de procesos de infiltración (Álvarez y Bolado, 1996), análisis de sequías (Shin y Salas, 2000), etc. Otras muchas aplicaciones de RNCs en hidrología se detallan en ASCE (2000aASCE ( , 2000b.…”
Section: Introductionunclassified