“…In recent years, some organizations and teams have developed algorithms, tools, and systems for protein function prediction using advanced computer technologies, such as machine learning and deep neural networks (Kulmanov et al, 2018;You et al, 2018You et al, , 2019Hakala et al, 2019;Lv et al, 2019b;Piovesan and Tosatto, 2019;Rifaioglu et al, 2019;Kulmanov and Hoehndorf, 2020). Researchers predict protein functions from one or more of the followings: protein sequences (Kulmanov et al, 2018;You et al, 2018You et al, , 2019Hakala et al, 2019;Piovesan and Tosatto, 2019;Kulmanov and Hoehndorf, 2020), protein structures (Yang et al, 2015;Zhang et al, 2018), protein protein interactions (PPI) network (Kulmanov et al, 2018;Zhang et al, 2018;You et al, 2019), and others (Kahanda and Ben-Hur, 2017;Hakala et al, 2019;Piovesan and Tosatto, 2019;Rifaioglu et al, 2019). For example specifically, GOLabeler (You et al, 2018) integrated five different types of sequence-based information and learned from the idea of web page ranking to train an LTR (learning to rank) regression model to receive these five types of information to achieve accurate annotation of GO terms.…”