“…Different from neural network ensembles and modular neural network approaches, cooperative modular neural networks can decompose automatically and combines adaptively individual neural network models so that a global optimal solution of the original problem can be obtained. Reported results show that the cooperative modular neural networks can be well applied to classification and pattern recognition (Auda and Kamel 1997a, b, 1998a, b, 1999Zhang 2000;Lu and Ito 1999;Yang and Browne 2001;Oh and Suen 2002;Melin et al 2005;Fogelman-Soulie 1993;Hodge et al 1999;Kamel 1999;Alexandre et al 2001;Ozawa 1998;Islam et al 2003). Specially, in recent decade, as special one class of cooperative modular neural networks, cooperative recurrent modular neural networks for constrained optimization have been developed and well studied (Rodríguez-Vázquez et al 1990;Glazos et al 1998;Zhang and Constantinides 1992;He and Sun 2001;Tao and Fang 2000;Xia and Wang 1995, b, 2001, b, 2005Xia 1996aXia , b, 1997Xia , 2003Xia , 2004Xia et al 2002aXia et al , b, 2004aXia et al , b, 2005Xia et al , 2007Wang et al 2000;Tan et al 2000;Anguita and Boni 2002;Zhang et al 2003;Feng 2004, 2006;Kamel 2007a, b, c, d, 2008;Tao et al 2001;Leung et al 2001).…”