Neural network ensembles (sometimes referred to as committees or classifier ensembles) are effective techniques to improve the generalization of a neural network system. Combining a set of neural network classifiers whose error distributions are diverse can generate better results than any single classifier. In this paper, some methods for creating ensembles are reviewed, including the following approaches: methods of selecting diverse training data from the original source data set, constructing different neural network models, selecting ensemble nets from ensemble candidates and combining ensemble members' results. In addition, new results on ensemble combination methods are reported.
The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modelling.
In the past, neural networks were viewed as classification and regression systems whose internal representations were incomprehensible. It is now becoming apparent that algorithms can be designed that extract comprehensible representations from trained neural networks, enabling them to be used for data mining and knowledge discovery, that is, the discovery and explanation of previously unknown relationships present in data. This chapter reviews existing algorithms for extracting comprehensible representations from neural networks and outlines research to generalize and extend the capabilities of one of these algorithms, TREPAN. This algorithm has been generalized for application to bioinformatics data sets, including the prediction of splice junctions in human DNA sequences, and cheminformatics. The results generated on these data sets are compared with those generated by a conventional data mining technique (C5) and appropriate conclusions are drawn.
Variable binding has long been a challenge to connectionists. Attempts to perform variable binding using localist and distributed connectionist representations are discussed, and problems inherent in each type of representation are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.