Drawing on neuroscience, we have developed a parallel, event-driven kernel for neurosynaptic computation, that is efficient with respect to computation, memory, and communication. Building on the previously demonstrated highlyoptimized software expression of the kernel, here, we demonstrate TrueNorth, a co-designed silicon expression of the kernel. TrueNorth achieves five orders of magnitude reduction in energyto-solution and two orders of magnitude speedup in time-tosolution, when running computer vision applications and complex recurrent neural network simulations. Breaking path with the von Neumann architecture, TrueNorth is a 4,096 core, 1 million neuron, and 256 million synapse brain-inspired neurosynaptic processor, that consumes 65mW of power running at real-time and delivers performance of 46 Giga-Synaptic OPS/Watt. We demonstrate seamless tiling of TrueNorth chips into arrays, forming a foundation for cortex-like scalability. TrueNorth's unprecedented time-to-solution, energy-to-solution, size, scalability, and performance combined with the underlying flexibility of the kernel enable a broad range of cognitive applications.