Abstract. This paper describes how reinforcement learning can be used to select from a wide variety of preconditioned solvers for sparse linear systems. This approach provides a simple way to consider complex metrics of goodness, and makes it easy to evaluate a wide range of preconditioned solvers. A basic implementation recommends solvers that, when they converge, generally do so with no more than a 17% overhead in time over the best solver possible within the test framework. Potential refinements of, and extensions to, the system are discussed.