Expert consensus recommends linear-combination modeling (LCM) of proton MR spectra with sequence-specific simulated metabolite basis function and experimentally derived macromolecular (MM) basis functions. Measured MM basis functions have been derived from metabolite-nulled spectra averaged across a small cohort. The use of subject-specific instead of cohort-averaged measured MM basis functions has not been studied. Furthermore, measured MM basis functions are not widely available to non-expert users, who commonly rely on parameterized MM signals internally simulated by LCM software. To investigate the impact of the choice of MM modeling, this study, therefore, compares metabolite level estimates between different MM modeling strategies (cohort-mean measured; subject-specific measured; parameterized) in a lifespan cohort and characterizes its impact on metabolite-age associations. 102 conventional (TE = 30 ms) and metabolite-nulled (TI = 650 ms) PRESS datasets, acquired from the medial parietal lobe in a lifespan cohort (20-70 years of age), were analyzed in Osprey. Short-TE spectra were modeled in Osprey using six different strategies to consider the macromolecular baseline. Fully tissue- and relaxation-corrected metabolite levels were compared between MM strategies. Model performance was evaluated by model residuals, the Akaike information criterion (AIC), and the impact on metabolite-age associations. The choice of MM strategy had a significant impact on metabolite level estimates. The estimates agreed relatively well between different MM strategies (r > 0.6) and had no major impact on the variance. The lowest relative model residuals and AIC values were found for the cohort-mean measured MM. Metabolite-age associations were consistently found for two major singlet signals (tCr, tCho) for all MM strategies, but varied substantially for highly J-coupled metabolites. A variance partition analysis indicated that up to 44% of the total variance was related to the choice of MM strategy. Additionally, the variance partition analysis reproduced the metabolite-age association for tCr and tCho found in the simpler correlation analysis. In summary, the inclusion of a single high-SNR MM basis function (cohort-mean) leads to more robust metabolite estimation (lower model residuals and AIC values) compared to MM strategies with more degrees of freedom (Gaussian parametrization) or subject-specific MM information. Integration of multiple LCM analyses into a single statistical model potentially improves the robustness in the detection of underlying effects (e.g. metabolite vs age), reduces algorithm-based bias, and estimates algorithm-related variance.