Metabolically energetic organs, such as the brain, require a reliable source of ATP, the majority of which is provided by oxidative phosphorylation in the mitochondrial matrix. Maintaining mitochondrial integrity is therefore of paramount importance in highly specialized cells such as neurons. Beyond acting as cellular 'power stations' and initiators of apoptosis, neuronal mitochondria are highly mobile, transported to pre-and post-synaptic sites for rapid, localized ATP production, serve to buffer physiological and pathological calcium and contribute to dendritic arborization. Given such roles, it is perhaps unsurprising that recent studies implicate AMP-activated protein kinase (AMPK), a cellular energy-sensitive metabolic regulator, in triggering mitochondrial fission, potentially balancing mitochondrial dynamics, biogenesis and mitophagy.Although the brain constitutes approximately only 2% of our total body weight, it accounts for the usage of in excess of 20% of our oxygen intake and is one of the most metabolically active tissues in our bodies. Approximately 90% ATP production occurs through oxidative phosphorylation in mitochondria, therefore, for tissues with a high metabolic rate such as the brain, regulating mitochondrial health is key to sustaining cellular function [1].Mitochondria are dynamic, double-membraned organelles that continually undergo fission, fusion and quality control (mitophagy) [2]. Long-term failure of either fission or fusion can lead to deleterious consequences and thus, a balance of these processes together with mitophagy is critical to maintaining cellular homoeostasis. Over the last 20 years, there has been a flurry of interest in discerning the molecular mechanisms regulating this mitochondrial life cycle, with significant success. Inner and outer mitochondrial membrane fusion are governed by optic atrophy (OPA)1 and mitofusin1/2 respectively whereas fission is mediated by the cytosolic protein, dynamin-related protein (Drp)1 (Figure 1) [3]. Drp1 is recruited to the mitochondrial outer membrane by binding to one of a number of mitochondrially located adaptors such as mitochondrial fission factor (Mff) and mitochondrial fission protein (Fis)1, mitochondrial dynamics proteins of 49 and 51 kDa (MiD49/51) [2,4]. Mitophagy plays a key role in the life cycle of the mitochondrion. Not only does it ensure that damaged mitochondria are neutralized, but physiological mitophagy can also regulate the number of mitochondria and their turnover [5]. In response to the decorating of the outer membrane of a depolarized mitochondrion with ubiquitin, an isolation membrane is recruited to extend round and engulf the mitochondrion, subsequently fusing with a lysosome to acidify and recycle the contents (Figure 1). Fission is frequently observed as a prelude to mitophagy as well as in the initiation of apoptosis [6]. Fusion generates a mitochondrial reticulum, allowing mitochondrial contents to mix, preventing the accumulation of mitochondrial DNA mutations as well as promoting enhanced ATP synthesi...