Gene looping juxtaposes the promoter and terminator regions of RNA polymerase II-transcribed genes in yeast and mammalian cells. Here we report an activator-dependent interaction of transcription initiation and termination factors during gene looping in budding yeast. Chromatin analysis revealed that MET16, INO1, and GAL1p-BUD3 are in a stable looped configuration during activated transcription. Looping was nearly abolished in the absence of transcription activators Met28, Ino2, and Gal4 of MET16, INO1, and GAL1p-BUD3 genes, respectively. The activator-independent increase in transcription was not accompanied by loop formation, thereby suggesting an essential role for activators in gene looping. The activators did not facilitate loop formation directly because they did not exhibit an interaction with the 3 end of the genes. Instead, activators physically interacted with the general transcription factor TFIIB when the genes were activated and in a looped configuration. TFIIB cross-linked to both the promoter and the terminator regions during the transcriptionally activated state of a gene. The presence of TFIIB on the terminator was dependent on the Rna15 component of CF1 3 end processing complex. Coimmunoprecipitation revealed a physical interaction of Rna15 with TFIIB. We propose that the activators facilitate gene looping through their interaction with TFIIB during transcriptional activation of genes.Transcription of protein encoding genes by RNA polymerase (RNAP) 2 II involves several distinct steps including the assembly of preinitiation complex, initiation, elongation, termination, and reinitiation (1, 2). Transcription starts with the recruitment of RNAP II and the general transcription factors TFIID, TFIIB, TFIIA, TFIIF, TFIIE, and TFIIH onto the promoter to form a preinitiation complex. RNAP II and general transcription factors are sufficient for accurate basal level transcription (2, 3). The response to activators requires additional cofactors that bring about stimulation of transcription by modifying chromatin structure in the promoter region and facilitating recruitment of RNAP II and general transcription factors to the exposed promoter (3-5). Once the gene is activated, the amount of transcripts produced is determined primarily by the number of reinitiation events (6). Despite the remarkable progress made in understanding the molecular mechanisms that govern initiation of transcription in eukaryotes, relatively little is known about the processes that mediate reinitiation.The studies with RNAP I and III have implicated proper termination as a prerequisite for reinitiation of transcription (7,8). During RNAP I and RNAP III-mediated transcription, termination factors help the polymerase to pause at the terminator region. This is followed by the release of the polymerase from the terminator. In RNAP I transcription, PTRF (Pol I and transcription release factor) facilitates release of the paused polymerase from the terminator region, whereas in RNAP III transcription, factor La performs an analogous fun...
The interaction of light with biological tissue has been successfully utilized for multiple therapeutic purposes. Previous studies have suggested that near infrared light (NIR) enhances the activity of mitochondria by increasing cytochrome c oxidase (COX) activity, which we confirmed for 810 nm NIR. In contrast, scanning the NIR spectrum between 700 nm and 1000 nm revealed two NIR wavelengths (750 nm and 950 nm) that reduced the activity of isolated COX. COX-inhibitory wavelengths reduced mitochondrial respiration, reduced the mitochondrial membrane potential (ΔΨm), attenuated mitochondrial superoxide production, and attenuated neuronal death following oxygen glucose deprivation, whereas NIR that activates COX provided no benefit. We evaluated COX-inhibitory NIR as a potential therapy for cerebral reperfusion injury using a rat model of global brain ischemia. Untreated animals demonstrated an 86% loss of neurons in the CA1 hippocampus post-reperfusion whereas inhibitory NIR groups were robustly protected, with neuronal loss ranging from 11% to 35%. Moreover, neurologic function, assessed by radial arm maze performance, was preserved at control levels in rats treated with a combination of both COX-inhibitory NIR wavelengths. Taken together, our data suggest that COX-inhibitory NIR may be a viable non-pharmacologic and noninvasive therapy for the treatment of cerebral reperfusion injury.
Brain ischemia/reperfusion injury results in death of vulnerable neurons and extensive brain damage. It is well known that mitochondrial release of cytochrome c (cyto c) is a hallmark of neuronal death, however the molecular events underlying this release are largely unknown. We tested the hypothesis that cyto c release is regulated by breakdown of the cristae architecture maintenance protein, optic atrophy 1 (OPA1), located in the inner mitochondrial membrane. We simulated ischemia/reperfusion in isolated primary rat neurons and interrogated OPA1 release from the mitochondria, OPA1 oligomeric breakdown, and concomitant dysfunction of mitochondrial dynamic state. We found that ischemia/reperfusion induces cyto c release and cell death that corresponds to multiple changes in OPA1, including: (i) translocation of the mitochondrial fusion protein OPA1 from the mitochondria to the cytosol, (ii) increase in the short isoform of OPA1, suggestive of proteolytic processing, (iii) breakdown of OPA1 oligomers in the mitochondria, and (iv) increased mitochondrial fission. Thus, we present novel evidence of a connection between release of cyto c from mitochondria and disruption of the mitochondrial fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.