Dimethylarginine dimethylaminohydrolases (DDAHs) are known to degrade asymmetric dimethylarginine, an endogenous inhibitor of NOS, and maintain vascular homeostasis; however, the regulatory pathways of DDAHs remain unclear. In this study, we aimed to define the role of transmembrane glycoprotein neuropilin-1 (NRP1) in the expression of DDAHs and investigate the potential roles of NRP1 in regulation of blood pressure. Short hairpin RNA-mediated knockdown of NRP1 reduced the level and mRNA stability of DDAH1 but not DDAH2 in HUVECs, whereas overexpression of NRP1 increased the mRNA stability of DDAH1. Meanwhile, mesenteric arteries and lung vascular endothelial cells of tamoxifen-inducible endothelial cell-specific NRP1 knockout mice exhibited decreased expression of DDAH1 and slightly increased expression of DDAH2. Mechanistically, the regulation of NRP1 on DDAH1 expression is mediated by a posttranscriptional mechanism involving miR-219-5p in HUVECs. Although the endothelial cell-specific NRP1 knockout mice did not exhibit any significant change in blood pressure at the basal level, they were more sensitive to low-dose angiotensin II infusion-induced increases in blood pressure. Our results show that NRP1 is required for full expression of DDAH1 in endothelial cells and that NRP1 contributes to protection from low-dose angiotensin II-induced increases in blood pressure.-Wang, Y., Wang, E., Zhang, Y., Madamsetty, V. S., Ji, B., Radisky, D. C., Grande, J. P., Misra, S., Mukhopadhyay, D. Neuropilin-1 maintains dimethylarginine dimethylaminohydrolase 1 expression in endothelial cells, and contributes to protection from angiotensin II-induced hypertension.