It has been proposed that opioid tolerance is a model of neuronal plasticity similar to learning and memory. Recent evidence suggests that neurotrophins may be involved in synaptic development and plasticity. Observations indicate that neurotrophin 4 (NT4) is required for the synaptic plasticity mediating both tolerance and memory. Also there are lines of evidence to indicate that NMDA receptors are involved in the neural plasticity underlying the development of opiate tolerance. Neurotrophins affect central transmission postsynaptically by enhancing NMDA receptor responsiveness. So we used the clinically available NMDA receptor antagonist, dextromethorphan, and the neurotrophin 4 antibody, anti-NT4, concomitantly and alone to investigate their effects on morphine tolerance. Tolerance was induced by injecting morphine (7 and 10 mg/kg i.p.) once per day for 4 days. Anti-NT4 (1 µg/rat i.c.v.) was administered 15 min before morphine. Results showed that chronic concomitant treatment of anti-NT4 with morphine in both doses inhibited the development of morphine tolerance. Also acute treatment of anti-NT4 significantly reversed the tolerance that was induced by morphine 7 mg/kg but failed to reverse the tolerance of morphine 10 mg/kg. Dextromethorphan in both doses (10 or 30 mg/kg) has an additive effect on the inhibitory effect of anti-NT4 on the reversal of morphine tolerance (7 mg/kg). These findings provide additional support for the hypothesis that NMDA receptor and NT4 may be involved in neural plasticity underlying opiate tolerance.