Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.
INTRODUCTIONMetastatic prostate cancer is a lethal disease and the second most frequent cause of cancer-related mortality in men in the United States (Jemal et al., 2008). Unfortunately, for such a prevalent disease, much remains unknown about the cellular and molecular mechanisms underlying prostate cancer metastasis. Extravasation, a step within the metastatic cascade, is the process whereby cancer cells exit the circulation via migration through an endothelial monolayer into the parenchyma of a secondary organ site (Wood, 1958). For extravasation to occur, cancer cells, perhaps associated with a thrombus, must first contact the microvascular endothelium, becoming entrapped in small-diameter vessels or adhering specifically to the luminal surface of the endothelium (Warren and Vales, 1972;Kramer and Nicolson, 1979). Some evidence suggests that extravasation is an efficient process, whereas other studies indicate that in some cases it might not occur at all because cancer cells proliferate intraluminally before rupturing microvessels (Crissman et al., 1985;Lapis et al., 1988;Luzzi et al., 1998). Adding to this complexity is that the mechanism of extravasation may depend on the tumor type and vascular bed involved. Thus, as with many other aspects of metastasis, questions remain about the basic mechanisms and the overall role of extravasation in the metastatic cascade.The passage of cancer cells across the endothelium, or transendothelial migration, is thought to be conceptually similar to leukocyte diapedesis (for a recent review see Miles et al., 2008). The extent to which this is true remains controversial, but several classes ...