CHAPTER 10Nanocomposites Nanocomposites are random media containing domains or inclusions that are of nanometer size scale. These nanoscopic domains or inclusions are also referred to as mesophases, whereas the bulk phase that they constitute is called the macroscopic phase. Optical nanocomposites can be of two different types, depending on the size of domains or inclusions. In one type, the size of the domains or inclusions are significantly smaller than the wavelength of light. These nanocomposites can be prepared as very high optical quality fibers, films, or bulk in which each domain/inclusion can perform a specific photonic or optoelectronic (combined electronic and photonic) function. This permits introducing multifunctionality, and each of these functions can independently be optimized. The other type of nanocomposite contains domains/inclusions comparable to or larger than the wavelength of light. In this case, the nanocomposite is a scattering medium through which light transmission can be manipulated to produce various photonic functions. Both types of nanocomposites are described here.Section 10.1 provides a discussion of the merits of the nanocomposites as photonic media. Section 10.2 describes nanocomposites as media suitable for optical waveguiding. It describes how a glass:polymer composite can exploit the advantages of both polymer and glass. The incorporation of nanocrystal inclusions in such composites provides the benefit of manipulation of the refractive index of the overall macroscopic phase. Section 10.3 describes the usage of scattering-type nanocomposites as lasing medium. This approach has given rise to terms such as random lasers and laser paints, which are introduced in this section.Section 10.4 introduces the concept of electric field enhancement in a specific domain, by judicious selection of the constituent nanodomains. This field enhancement can be utilized to produce a significant increase in the strength of optical interactions-in particular, nonlinear optical effects, which strongly depend on the local electric field. Section 10.5 describes multiphasic nanocomposites that provide the exciting prospect of designing optical materials with many nanoscopic phases (mesophases). The optical interactions within and among mesophases can be controlled to derive a specific photonic response or multifunctionality. Examples of photonics applications are provided. Section 10.6 is an extension of the concept of multiphasic nanocomposite, applied to photorefractivity. Photorefractivity is a multifunctional property that involves two optoelectronic functionalities: photoconductivity and the linear electro-optic effect. The section illustrates how the use of