The refractive index of GaAs has been measured in the wavelength range from 0.97 to 17 μm, which covers nearly the entire transmission range of the material. Linear and quadratic temperature coefficients of the refractive index have been fitted to data measured between room temperature and 95 °C. In the midinfrared, the refractive index and temperature dependence are obtained from analysis of etalon fringes measured by Fourier-transform spectroscopy in undoped GaAs wafers. In the near infrared, the refractive index is deduced from the quasiphasematching (QPM) wavelengths of second-harmonic generation in orientation-patterned GaAs crystals. Two alternative empirical expressions are fitted to the data to give the refractive index as a function of wavelength and temperature. These dispersion relations agree with observed QPM conditions for midinfrared difference-frequency generation and second-harmonic generation. Predictions for various nonlinear optical interactions are presented, including tuning curves for optical parametric oscillators and amplifiers. Also, accurate values are predicted for QPM conditions in which extremely large parametric gain bandwidths can be obtained.
We report the development of equally sloped tomography for the reconstruction of a 3D object from a number of 2D projections. In a combination of pseudopolar fast Fourier transform and the oversampling method with an iterative algorithm, equally sloped tomography makes superior 3D reconstruction to conventional tomography that has an intrinsic drawback due to the use of equally angled 2D projections. We believe this general approach will find applications in x-ray imaging, electron microscopy, coherent diffraction microscopy, and other tomographic imaging fields.
Refractive index sensitivity of guided resonances in photonic crystal slabs is analyzed. We show that modal properties of guided resonances strongly affect spectral sensitivity and quality factors, resulting in substantial enhancement of refractive index sensitivity. A three-fold spectral sensitivity enhancement is demonstrated for suspended slab designs, in contrast to designs with a slab resting over a substrate. Spectral sensitivity values are additionally shown to be unaffected by quality factor reductions, which are common to fabricated photonic crystal nano-structures. Finally, we determine that proper selection of photonic crystal slab design parameters permits biosensing of a wide range of analytes, including proteins, antigens, and cells. These photonic crystals are compatible with large-area biosensor designs, permitting direct access to externally incident optical beams in a microfluidic device.
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013.
We demonstrate an optical parametric oscillator (OPO) based on GaAs. The OPO utilizes an all-epitaxially-grown orientation-patterned GaAs crystal that is 0.5 mm thick, 5 mm wide, and 11 mm long, with a domain reversal period of 61.2 microm. Tuning either the near-IR pump wavelength between 1.8 and 2 microm or the temperature of the GaAs crystal allows the mid-IR output to be tuned between 2.28 and 9.14 microm, which is limited only by the spectral range of the OPO mirrors. The pump threshold of the singly resonant OPO is 16 microJ for the 6-ns pump pulses, and the photon conversion slope efficiency reaches 54%. We also show experimentally the possibility of pump-polarization-independent frequency conversion in GaAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.