In vitro replication of an unnatural imidazopyridopyridine:naphthyridine base pair, (i.e., ImN(N):NaO(O)), having four hydrogen bonds was investigated. Kinetic studies of single-nucleotide insertion revealed that ImN(N) and NaO(O) were recognized as complementary bases by an exonuclease-deficient Klenow fragment with higher specificity and efficiency than two previously described pairs (ImN(O):NaO(N) and ImO(N):NaN(O)) because of higher thermal and thermodynamic stabilities and the DAAD:ADDA (D=donor, A=acceptor) hydrogen-bonding pattern of the ImN(N):NaO(O) pair. Faithful polymerase chain reaction (PCR) amplification of a DNA fragment containing the ImN(N):NaO(O) pair was achieved by using DNA polymerases possessing 3'→5' exonuclease activity (≈99.5 % per doubling).