Scintillation proximity assays (SPAs) have become a powerful tool for high-throughput screening (HTS) because they can measure the activity and binding of very diverse classes of drug targets. By applying the basic principles of ligand-receptor binding and enzyme kinetics, it is possible to build a large variety of miniaturized, high-throughput assays and screen millions of compounds. SPAs are enabled by the diversity of radiolabeled molecules and affinity tags that are commercially available. These synthetic radiotracers allow for minimal disturbance of the natural binding interactions. This article will present a comprehensive review of the technique and provide detailed information on its applications related to HTS, highlighting the major uses and giving some suggestions for future research.