Two types of biocatalysts based on immobilized cells of Alcaligenes metalcaligenes exhibiting aspartate ammonia-lyase activity (EC 4.3.1.1) were developed for the enzymic preparation of L-aspartic acid from ammonium fumarate. The first type of the biocatalyst consists in individual covalently crosslinked and permeabilized cells(I), while the second type is represented by cell aggregates (II). For the above preparation, biocatalyst I can be used only discontinuously in a mixed reactor. After termination of the reaction between individual cycles of its use, the biocatalyst is returned to the reactor in the form of a highly concentrated cell suspension or paste. Biocatalyst II can be used discontinuously or continuously in a fixed-bed column of the catalyst. The effects of pH, substrate concentration and temperature on the reaction velocity and effectivity of enzymic conversion was investigated. Optimal parameters of the reaction are as follows: pH 8.5, initial substrate concentration, 1.35 mol/L, temperature for discontinuous process, 37 degrees C, and temperature for continuous process, 25 degrees C. Under these conditions the enzymic conversion of substrate to product is quantitative. Under optimal toring conditions, the specific activity of both catalysts does not change within a period of one year. The operational half-life of the biocatalyst II during continuous use in a fixed-bed column of the catalyst under standard reaction conditions depends on the quality of the substrate. The discontinuous preparation of L-asparatic acid with the aid of biocatalyst I and continuous preparation of this product with the aid of biocatalyst II have been verified under pilot-plant conditions.