Recently, a new class of in vitro and ex vivo radiotracers/radioprotectors, the nitroxyl-labelled agent 1-ethyl-1-nitroso–3-[4-(2,2,6,6–tetramethylpiperidine-1-oxyl)]-urea (SLENU), has been discovered. Our previous investigations demonstrated that SLENU is a low-molecular-weight stable free radical which is freely membrane permeable, easily crosses the blood brain barrier and exhibited in/ex vivo the lowest general toxicity and higher anticancer activity against some experimental tumour models. Further investigation was aimed to develop a 99mTc-labelled SLENU (97%) as a chelator and evaluate its labelling efficiency and potential use as a tumour seeking agent and for early diagnosis. Tissue biodistribution of 99mTc-SLENU was determined in normal mice at 1, 2 and 24 h (n = 4/time interval, route of administration i.v.). The distribution data were compared using male albino non-inbred mice and electron paramagnetic resonance investigation. The imaging characteristics of 99mTc-SLENU conjugate examined in BALB/c mice grafted with Ehrlich Ascitis tumour in the thigh of hind leg demonstrated major accumulation of the radiotracer in the organs and tumour. Planar images and auto-radiograms confirmed that the tumours could be visualized clearly with 99mTc-SLENU. Blood kinetic study of radio-conjugate showed a bi-exponential pattern, as well as quick reduced duration in the blood circulation. This study establishes nitroxyls as a general class of new spin-labelled diagnostic markers that reduce the negative lateral effects of radiotherapy and drug damages, and are appropriate for tumour-localization.