The present study describes a novel nonradioactive methodology for in vivo noninvasive, real-time imaging of blood-brain barrier (BBB) permeability for conventional drugs, using nitroxyl radicals as spin-labels and magnetic resonance imaging (MRI). Two TEMPO-labeled analogues (SLENU and SLCNUgly) of the anticancer drug lomustine [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea] were synthesized, using a substitution of the cyclohexyl part with nitroxyl radical. Nonmodified nitroxyl radical TEMPOL was used for comparison. The nitroxyl derivatives were injected intravenously in healthy mice via the tail vein, and MR imaging of the brain was performed on a 7.0 T MRI. The MRI signal dynamic of SLENU and SLCNUgly followed the same kinetics as nonmodified TEMPO radical. SLENU and SLCNUgly were rapidly transported and randomly distributed in the brain tissue, which indicated that the exchange of cyclohexyl part of lomustine with TEMPO radical did not suppress the permeability of the anticancer drug for BBB. The selected nitroxyl derivatives possessed different hydrophobicity, cell permeabilization ability, and blood clearance. Based on these differences, we investigated the relationship betweenthe structure of nitroxyl derivatives, their half-life in the circulation, and their MRI signal dynamic in the brain. This information was important for estimation of the merits and demerits of the described methodology and finding pathways for overcoming the restrictions.
In the present study, we describe a multimodal QD probe with combined fluorescent and paramagnetic properties, based on silica-shelled single QD micelles with incorporated paramagnetic substances [tris(2,2,6,6-tetramethyl-3,5-heptanedionate)/gadolinium] into the micelle and/or silica coat. The probe was characterized with high photoluminescence quantum yield and good positive MRI contrast, low cytotoxicity, and easy intracellular delivery in viable cells. The intravenous administration of the probe in experimental animals did not affect significantly the physiological parameters and microcirculation (e.g., heart rate, blood pressure, diameter and shape of blood vessels), which makes it appropriate for tracing of blood circulation and in vivo multimodal imaging using fluorescent confocal microscopy, two-photon microscopy, and MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.