We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle π), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to all orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E(N, g). We illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.