Among other applications, magnesium hydroxide is commonly used as a flame-retardant filler in composite materials, as well as a precursor for magnesium oxide refractory ceramic. The microstructure of the powder is of prime importance in both technical applications. The influence of synthesis parameters on the morphological characteristics of magnesium hydroxide nanoparticles precipitated in dilute aqueous medium was studied. Several parameters were envisaged such as chemical nature of the base precipitant, type of counter-ion, temperature and hydrothermal treatment. Special attention was given to the obtaining of platelet-shaped, nanometric and de-agglomerated powders. The powders were characterized in terms of particle size distribution, crystal habits, morphology and ability to be redispersed in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and laser diffusion analyses were used for this purpose. r