2012
DOI: 10.1111/j.1469-185x.2012.00247.x
|View full text |Cite
|
Sign up to set email alerts
|

New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma

Abstract: Most textbooks and research reports state that the structures of the tetrapod forelimbs and hindlimbs are serial homologues. From this view, the main challenge of evolutionary biologists is not to explain the similarity between tetrapod limbs, but instead to explain why and how they have diverged. However, these statements seem to be related to a confusion between the serial homology of the vertebrate pelvic and pectoral appendages as a whole, and the serial homology of the specific soft- and hard-tissue struc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

13
178
1

Year Published

2014
2014
2017
2017

Publication Types

Select...
6
1

Relationship

5
2

Authors

Journals

citations
Cited by 53 publications
(192 citation statements)
references
References 50 publications
13
178
1
Order By: Relevance
“…In contrast, the co-option of various similar genes in the development of the more distal, and phylogenetically more recent, stylopod/zeugopod and particularly autopod regions of the PECA and PELA of tetrapods led to a marked derived anatomical and developmental similarity between these structures in both appendages (i.e., a ‘similarity bottleneck’ sensu Diogo et al 46, Diogo and Molnar48, and sensu the present work). These more distal limb regions, principally the autopodia, display developmental patterns that are quite different from those of the fins of plesiomorphic gnathostomes41, and of more proximal limb regions in tetrapods.…”
Section: Resultscontrasting
confidence: 54%
See 2 more Smart Citations
“…In contrast, the co-option of various similar genes in the development of the more distal, and phylogenetically more recent, stylopod/zeugopod and particularly autopod regions of the PECA and PELA of tetrapods led to a marked derived anatomical and developmental similarity between these structures in both appendages (i.e., a ‘similarity bottleneck’ sensu Diogo et al 46, Diogo and Molnar48, and sensu the present work). These more distal limb regions, principally the autopodia, display developmental patterns that are quite different from those of the fins of plesiomorphic gnathostomes41, and of more proximal limb regions in tetrapods.…”
Section: Resultscontrasting
confidence: 54%
“…A recent compilation of comparative anatomical, paleontological and developmental data strongly suggests that the PECA and PELA were markedly different from each other anatomically in the earliest fishes that had both, and that their most proximal regions (i.e., pelvic vs. pectoral girdles) have remained anatomically, developmentally and genetically quite different454647. In contrast, the co-option of various similar genes in the development of the more distal, and phylogenetically more recent, stylopod/zeugopod and particularly autopod regions of the PECA and PELA of tetrapods led to a marked derived anatomical and developmental similarity between these structures in both appendages (i.e., a ‘similarity bottleneck’ sensu Diogo et al 46, Diogo and Molnar48, and sensu the present work).…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…In adult chondrichthyans the pectoral abductor and adductor and the pelvic adductor have superficial and deep bundles, but the pelvic abductor has instead proximal and distal bundles, demonstrating that the significant anatomical differences between the pectoral and pelvic appendages of sharks concern not only hard tissues, but also soft tissues such as muscles [22, 49, 58]. Our results demonstrate that during early developmental stages the muscles of the pectoral and pelvic fins are more similar to each other than in adulthood.…”
Section: Discussionmentioning
confidence: 99%
“…However, dismissed from these theories are additional components essential for fin/limb function and which probably reinforced their adaptive rate, such as muscles, nerves, or blood vessels. Comparative myogenic studies performed by Diogo and colleagues, integrated with data from other authors and fields, suggest that the musculature of pectoral (fore-) and pelvic (hind-) appendages are particularly different in the proximal (girdle) region of these appendages [22, 49, 50]. These data question the existence of a common serial homologue musculature in pectoral and pelvic appendages, and indicate that what makes the pectoral and pelvic appendages so unique, and so remarkably similar in derived gnathostomes such as tetrapods, might in fact be the result of derived co-option [51].…”
Section: Introductionmentioning
confidence: 99%