Soil temperature and gas (CO 2 concentration and flux) have been investigated at Merapi volcano (Indonesia) during two inter-eruptive periods (2002 and 2007). Precise imaging of the summit crater and the spatial pattern of diffuse degassing along a gas traverse on the southern slope are interpreted in terms of summit structure and major caldera organization. The summit area is characterized by decreasing CO 2 concentrations with distance from the 1932 crater rim, down to atmospheric levels at the base of the terminal cone. Similar patterns are measured on any transect down the slopes of the cone. The spatial distribution of soil gas anomalies suggests that soil degassing is controlled by structures identified as concentric historical caldera rims (1932, 1872, and 1768), which have undergone severe hydrothermal self-sealing processes that dramatically lower the permeability and porosity of soils. Temperature and CO 2 flux measurements in soils near the dome display heterogeneous distributions which are consistent with a fracture network identified by previous geophysical studies. These data support the idea that the summit is made of isolated and mobile blocks, whose boundaries are either sealed by depositional processes or Bull Volcanol (2009) 71:815-826