2015
DOI: 10.1007/s12583-015-0540-0
|View full text |Cite
|
Sign up to set email alerts
|

New seismic attribute technology for predicting dissolved pore-fracture of deeply buried platform margin reef-beach system in Northeast Sichuan Basin, China

Abstract: The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin in SW China. The storage space types of reef complexes are dominated by the dissolved pore-fracture (DPF). However, using only single geophysical methods, it is difficult to predict effective distribution of DPF. Based on a combination of geological models and geophysics technology, this study prop… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2018
2018

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Michelena (2011) [1] proposed facies probabilities from multidimensional crossplots of seismic attributes and helped to improve sand identification where sands were more anisotropic than the background in the application of tight gas. Chao Wang (2015) [2] proposed two new seismic attribute technologies including anisotropy coherence technique (ACT) and fracture intensity inversion (FII) to provide an effective way to predict the distribution of DPF in similar geological settings. However, the attribute ambiguity reduces the accuracy of the predicted results.…”
Section: Introductionmentioning
confidence: 99%
“…Michelena (2011) [1] proposed facies probabilities from multidimensional crossplots of seismic attributes and helped to improve sand identification where sands were more anisotropic than the background in the application of tight gas. Chao Wang (2015) [2] proposed two new seismic attribute technologies including anisotropy coherence technique (ACT) and fracture intensity inversion (FII) to provide an effective way to predict the distribution of DPF in similar geological settings. However, the attribute ambiguity reduces the accuracy of the predicted results.…”
Section: Introductionmentioning
confidence: 99%