Predictive simulation of crack growth and fracture of wood and wood composites has always been difficult, and it has been limited by the availability of appropriate fracture models. As summarized herein, progress has been made on several fronts. First, a variety of fictitious crack model refinements have been made, along with the corresponding effects on bulk load-deformation response and R-curve behavior. Second, progress has been made on several different discrete element approaches that can explicitly represent material heterogeneity and variability. While progress has been substantial, a universal fracture law for wood remains elusive.