As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm 9 20 mm 9 10 mm) were bonded with seven commercially available adhesives: polyurethane (PUR), polyvinyl acetate (PVAc), emulsion-polymer-isocyanate (EPI), melamine-formaldehyde (MF), phenol-resorcinol-formaldehyde (PRF), melamine-urea-formaldehyde1 (MUF1), and melamine-urea-formaldehyde2 (MUF2). Each adhesive was tested at six temperatures: 20, -20, -30, -40, -50 and -60°C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low temperatures, the variability of shear strengths increased with all adhesives. Percent wood failures of joints bonded with different adhesives in most cases were not sensitive to temperature changes.
This paper introduces, with the development of user-subroutines in the finite-element software Abaqus FEA®, a new practical analysis tool to simulate transient nonlinear moisture transport in wood. The tool is used to revisit the calibration of moisture simulations prior to the simulation of mechanical behaviour in bending subjected to climate change. Often, this calibration does not receive sufficient attention, since the properties and mechanical behaviour are strongly moisture dependent. The calibration of the moisture transport simulation is made with the average volumetric mass data experimentally obtained on a paired specimen of Norway spruce (Picea abies) with the dimensions $$30\times 15\times 640\, {\mathrm{mm}}^{3}$$
30
×
15
×
640
mm
3
. The data, from a 90-day period, were measured under a constant temperature of 60 °C and systematic relative humidity cycles between 40 and 80%. A practical method based on analytical expressions was used to incorporate hysteresis and scanning behaviour at the boundary surface. The simulation tool makes the single-Fickian model and Neumann boundary condition readily available and the simulations more flexible to different uses. It also allows for a smoother description of inhomogeneity of material. The analysis from the calibration showed that scanning curves associated with hysteresis cannot be neglected in the simulation. The nonlinearity of the analysis indicated that a coherent set of moisture dependent diffusion and surface emission coefficient is necessary for the correct description of moisture gradients and mass transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.